最近在学习《ULK》中关于非连续内存区管理的内容,这里简单的笔记下。
vmalloc.c部分代码:
/* 在特定的地址范围内寻找一个大小为size的空间, 如果找到,就申请一个vm_struct占用这个空间 */ struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, unsigned long start, unsigned long end) { struct vm_struct **p, *tmp, *area; unsigned long align = 1; unsigned long addr; if (flags & VM_IOREMAP) { int bit = fls(size); if (bit > IOREMAP_MAX_ORDER) bit = IOREMAP_MAX_ORDER; else if (bit < PAGE_SHIFT) bit = PAGE_SHIFT; align = 1ul << bit; } addr = ALIGN(start, align); area = kmalloc(sizeof(*area), GFP_KERNEL); if (unlikely(!area)) return NULL; /* * We always allocate a guard page. */ /*额外的增加大小,这样地址使用时会有空洞,来检测内存越界*/ size += PAGE_SIZE; if (unlikely(!size)) { kfree (area); return NULL; } /*遍历当前的链表,看下还能否有这么一块地方可以找到*/ write_lock(&vmlist_lock); for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) { if ((unsigned long)tmp->addr < addr) { if((unsigned long)tmp->addr + tmp->size >= addr) addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align); continue; } if ((size + addr) < addr) goto out; if (size + addr <= (unsigned long)tmp->addr) goto found; addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align); if (addr > end - size) goto out; } /*如果找到了,就把这个地方占了*/ found: area->next = *p; *p = area; area->flags = flags; area->addr = (void *)addr; area->size = size; area->pages = NULL; area->nr_pages = 0; area->phys_addr = 0; write_unlock(&vmlist_lock); return area; /* 没找到,返回NULL */ out: write_unlock(&vmlist_lock); kfree(area); if (printk_ratelimit()) printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n"); return NULL; } /** * get_vm_area - reserve a contingous kernel virtual area * * @size: size of the area * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC * * Search an area of @size in the kernel virtual mapping area, * and reserved it for out purposes. Returns the area descriptor * on success or %NULL on failure. */ struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) { return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END); } /** * remove_vm_area - find and remove a contingous kernel virtual area * * @addr: base address * * Search for the kernel VM area starting at @addr, and remove it. * This function returns the found VM area, but using it is NOT safe * on SMP machines. */ /* 根据传入的现行地址,找到对应的vm_struct, 然后把它从链表中去除,并更新页表。 */ struct vm_struct *remove_vm_area(void *addr) { struct vm_struct **p, *tmp; write_lock(&vmlist_lock); for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) { if (tmp->addr == addr) goto found; } write_unlock(&vmlist_lock); return NULL; found: unmap_vm_area(tmp); *p = tmp->next; write_unlock(&vmlist_lock); return tmp; } void __vunmap(void *addr, int deallocate_pages) { struct vm_struct *area; if (!addr) return; if ((PAGE_SIZE-1) & (unsigned long)addr) { printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr); WARN_ON(1); return; } /* 根据传入的现行地址找到对应的vm_struct,并将其从vmlist中移除, 并更新页表, 但是并不删掉该vm_struct,因为后续还需要使用里面的信息 */ area = remove_vm_area(addr); if (unlikely(!area)) { printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", addr); WARN_ON(1); return; } if (deallocate_pages) { int i; /* 根据vm_struct的信息,释放对应的物理页,然后释放存储的数组 */ for (i = 0; i < area->nr_pages; i++) { if (unlikely(!area->pages[i])) BUG(); __free_page(area->pages[i]); } if (area->nr_pages > PAGE_SIZE/sizeof(struct page *)) vfree(area->pages); else kfree(area->pages); } /*所有的关联内存都清理干净了,释放vm_struct */ kfree(area); return; } /** * vfree - release memory allocated by vmalloc() * * @addr: memory base address * * Free the virtually contiguous memory area starting at @addr, as * obtained from vmalloc(), vmalloc_32() or __vmalloc(). * * May not be called in interrupt context. */ /*释放一块内存*/ void vfree(void *addr) { BUG_ON(in_interrupt()); __vunmap(addr, 1); } EXPORT_SYMBOL(vfree); /** * vunmap - release virtual mapping obtained by vmap() * * @addr: memory base address * * Free the virtually contiguous memory area starting at @addr, * which was created from the page array passed to vmap(). * * May not be called in interrupt context. */ void vunmap(void *addr) { BUG_ON(in_interrupt()); __vunmap(addr, 0); } EXPORT_SYMBOL(vunmap); /** * vmap - map an array of pages into virtually contiguous space * * @pages: array of page pointers * @count: number of pages to map * @flags: vm_area->flags * @prot: page protection for the mapping * * Maps @count pages from @pages into contiguous kernel virtual * space. */ /* 将一组已经申请好的物理页映射到一个连续的现行地址中, 并返回线性地址 */ void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) { struct vm_struct *area; if (count > num_physpages) return NULL; area = get_vm_area((count << PAGE_SHIFT), flags); if (!area) return NULL; if (map_vm_area(area, prot, &pages)) { vunmap(area->addr); return NULL; } return area->addr; } EXPORT_SYMBOL(vmap); /** * __vmalloc - allocate virtually contiguous memory * * @size: allocation size * @gfp_mask: flags for the page level allocator * @prot: protection mask for the allocated pages * * Allocate enough pages to cover @size from the page level * allocator with @gfp_mask flags. Map them into contiguous * kernel virtual space, using a pagetable protection of @prot. */ /* 申请一块连续的线性地址,但是后面对应的物理地址页可以不连续 */ void *__vmalloc(unsigned long size, int gfp_mask, pgprot_t prot) { struct vm_struct *area; struct page **pages; unsigned int nr_pages, array_size, i; /* 讲size根据page页大小对其 */ size = PAGE_ALIGN(size); if (!size || (size >> PAGE_SHIFT) > num_physpages) return NULL; /*根据调整后的size 申请一个vm_struct结构体*/ area = get_vm_area(size, VM_ALLOC); if (!area) return NULL; /* 根据调整后的size计算出需要多少个物理页, 以便申请对应的内存用来做数组,存储该物理页*/ nr_pages = size >> PAGE_SHIFT; array_size = (nr_pages * sizeof(struct page *)); area->nr_pages = nr_pages; /* Please note that the recursion is strictly bounded. */ /*申请一块内存,用来存放物理页数组*/ if (array_size > PAGE_SIZE) pages = __vmalloc(array_size, gfp_mask, PAGE_KERNEL); else pages = kmalloc(array_size, (gfp_mask & ~__GFP_HIGHMEM)); area->pages = pages; if (!area->pages) { remove_vm_area(area->addr); kfree(area); return NULL; } memset(area->pages, 0, array_size); /*循环调用alloc_page 来申请物理页,然后将页的信息放到数组中 */ for (i = 0; i < area->nr_pages; i++) { area->pages[i] = alloc_page(gfp_mask); if (unlikely(!area->pages[i])) { /* Successfully allocated i pages, free them in __vunmap() */ area->nr_pages = i; goto fail; } } /*更新页表,将物理页面和现行地址绑定起来*/ if (map_vm_area(area, prot, &pages)) goto fail; return area->addr; fail: vfree(area->addr); return NULL; } EXPORT_SYMBOL(__vmalloc); /** * vmalloc - allocate virtually contiguous memory * * @size: allocation size * * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * * For tight cotrol over page level allocator and protection flags * use __vmalloc() instead. */ void *vmalloc(unsigned long size) { return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); } EXPORT_SYMBOL(vmalloc); /** * vmalloc_exec - allocate virtually contiguous, executable memory * * @size: allocation size * * Kernel-internal function to allocate enough pages to cover @size * the page level allocator and map them into contiguous and * executable kernel virtual space. * * For tight cotrol over page level allocator and protection flags * use __vmalloc() instead. */ #ifndef PAGE_KERNEL_EXEC # define PAGE_KERNEL_EXEC PAGE_KERNEL #endif void *vmalloc_exec(unsigned long size) { return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); } /** * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) * * @size: allocation size * * Allocate enough 32bit PA addressable pages to cover @size from the * page level allocator and map them into contiguous kernel virtual space. */ void *vmalloc_32(unsigned long size) { return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); }
发表评论